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Abstract
Populations usually considered foraging generalists may include specialized individuals that feed on a restricted subset of 
the prey spectrum consumed by the population. By analyzing the time series of δ13C and δ15N values in sequential growth 
layer groups within tooth dentin, we measured population- and individual-level variation in resource use of three populations 
of Guiana dolphins (Sotalia guianensis)—Caravelas River, Babitonga Bay, and Norte Bay—along a latitudinal gradient in 
the southwestern Atlantic Ocean. We show that the Guiana dolphin at Caravelas River is a generalist population consisting 
of individual dietary specialists, likely due to the absence of other resident dolphin populations thus allowing individuals 
to target prey across a wide range of habitats. The Babitonga Bay population is also composed of individual specialists 
potentially due to the selective foraging behavior of some individuals on high-quality prey sources within and near the bay. 
In contrast, the Norte Bay population comprises individual generalists, which likely reflects its distinctive cohesive social 
organization, coexistence with two other dolphin species, and an opportunistic foraging strategy in response to resource 
fluctuations inherent to the southern limit of the species distribution. Although the Guiana dolphin is generally considered to 
be a dietary generalist at the population level, our findings reveal that the total niche width of populations and the degree of 
individual diet specialization are highly context dependent, suggesting dietary plasticity that may be related to a latitudinal 
gradient in resource availability and environmental conditions.
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Introduction

Natural populations can be composed of ecologically het-
erogeneous individuals that vary in their foraging strate-
gies and feed on different prey types (Bolnick et al. 2002; 
Bearhop et al. 2004). Such variation in resource use among 
co-occurring individuals has long been recognized between 
sexes (Elorriaga-Verplancken et al. 2013), age or ontogenetic 
stage (Polis 1984), and discrete polymorphisms (Skúlason 
and Smith 1995). However, individual diet specialization 
is a widespread phenomenon in which organisms have nar-
rower dietary niches than their population’s irrespective of 
age, sex, or morphology (Bolnick et al. 2003) and instead 
results from predation, intra- versus inter-specific competi-
tion, and/or ecological opportunity (resource diversity and/
or abundance). As these ecological drivers can vary along 
environmental gradients, the degree of individual diet spe-
cialization across populations of the same species likely 
reflects contrasting biotic interactions and abiotic conditions.

Marine mammals have often been the focus of studies 
examining the ecological drivers of individual diet speciali-
zation. For example, the prevalence of individual diet spe-
cialization in sea otters (Enhydra lutris) varies in response 
to intraspecific competition (Estes et al. 2003; Tinker et al. 
2008) and habitat type (Newsome et al. 2015). Popula-
tion total niche width (TNW) and degree of individual diet 
specialization vary among ringed seal (Pusa hispida) and 
beluga (Delphinapterus leucas) populations across an Arctic 
latitudinal gradient likely in response to spatial variation in 
ecological opportunity (Yurkowski et al. 2016). Antarctic 
(Arctocephalus gazella) and sub-Antarctic fur seals (Arc-
tocephalus tropicalis) have greater TNW when in allopatry 
than in sympatry (Kernaléguen et al. 2015). These patterns 
are potentially related to the niche variation hypothesis, 
which predicts that a release from or reduction in interspe-
cific competition results in an expansion of population TNW 
that permit greater phenotypic variation in diet composi-
tion at the individual level (Van Valen 1965). Subsequent 
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theoretical work suggests that population TNW can expand 
in two ways (Roughgarden 1972): (i) via minimization in 
resource use overlap among conspecifics that reduces the 
within-individual component (WIC) of the niche relative 
to TNW; or (ii) via an expansion of the WIC such that 
most individuals become more generalists and use the full 
spectrum of available resources. By constraining popula-
tion TNW, interspecific competition forces conspecifics to 
forage on similar prey types, which dampens the degree of 
individual diet specialization (Bolnick et al. 2003).

Optimal foraging theory predicts that when resources are 
abundant, individuals will select prey based on their ener-
getic benefits relative to handling time costs. As preferred 
prey become scarce, individuals may become more oppor-
tunistic and explore less profitable prey (MacArthur and 
Pianka 1966; Schoener 1971) or use specialized foraging 
tactics to outcompete conspecifics for a particular prey type. 
Foraging specialization is well-established for marine mam-
mals, such as sea otters that learned to forage on a limited set 
of invertebrate species (Estes et al. 2003; Tinker et al. 2008) 
or killer whales (Orcinus orca) that specialize on salmonids 
or marine mammals (Ford and Ellis 2006). The learning 
process of specialized foraging tactics may require cognitive 
abilities and motor skills that can vary between conspecif-
ics, widening the population TNW and increasing individual 
diet specialization (Stephens and Krebs 1986; Bolnick et al. 
2010). Thus, ecological factors that regulate intra-and inter-
specific competition such as ecological opportunity, popula-
tion density, social organization, and habitat use can lead to 
dietary variation between conspecifics that influences the 
total niche width of a population (Krause et al. 2002; Estes 
et al. 2003; Newsome et al. 2015; Sheppard et al. 2018).

The Guiana dolphin, Sotalia guianensis, provides a good 
model to evaluate the relationship between ecological factors 
(e.g., competition and resource availability) and individual 
diet specialization. This species is distributed along a latitu-
dinal gradient in coastal waters of the southwestern Atlan-
tic Ocean (Borobia et al. 1991) in populations of mostly 
resident individuals (e.g., Flores and Bazzalo 2004; Hardt 
et al. 2010; Cantor et al. 2012; Cremer et al. 2018). At tropi-
cal latitudes, the Guiana dolphin is the only cetacean that 
inhabits the coastal waters of the Caravelas River (Rossi-
Santos et al. 2006). In contrast, Guiana dolphin populations 
that occur in subtropical latitudes are usually sympatric with 
other dolphin species. For example, Guiana dolphins coex-
ist with the franciscana dolphin (Pontoporia blainvillei) in 
Babitonga Bay (Cremer et al. 2018), while they are sympa-
tric with both franciscana and Lahille's bottlenose dolphins 
(Tursiops truncatus gephyreus) in Norte Bay (Flores and 
Bazzalo 2004). These differences in patterns of coexistence 
with other dolphin species change the potential for inter and 
intra-competition, which likely influences the TNW and the 

degree of individual diet specialization of Guiana dolphin 
populations across their range.

Data derived from stomach content analysis revealed 
that these three Guiana dolphin populations are opportun-
istic and generalist foragers at the population level, with a 
diet primarily consisting of demersal fish and cephalopods 
(Daura-Jorge et al. 2011; Cremer et al. 2012; Rodrigues et al. 
2020). Some studies have also explored trophic interactions 
between Guiana dolphins and other sympatric dolphin popu-
lations in Norte Bay and Babitonga Bay using stable isotope 
analysis, showing some trophic overlap with the Lahille’s 
bottlenose (Teixeira et al. 2021) and franciscana dolphins 
(Hardt et al. 2013), respectively. However, no study to date 
has evaluated individual diet specialization within or across 
Guiana dolphin populations, likely because longitudinal 
foraging records required to quantify this information are 
particularly challenging to obtain for large mobile predators 
living in marine ecosystems.

Stable isotope analysis can reconstruct foraging and 
movement patterns at the individual level and has been espe-
cially useful for studying mobile and elusive animals like 
marine mammals (e.g. Rossman et al. 2015; Yurkowski et al. 
2016). In general, variation in carbon isotope (δ13C) values 
among marine consumers reflect the sources of primary pro-
duction (e.g. phytoplankton vs macroalgae vs seagrass) that 
fuel the habitats where consumers forage (e.g. inshore ver-
sus offshore vs estuarine), whereas nitrogen isotope (δ15N) 
values are commonly used as proxies for consumer trophic 
position (DeNiro and Epstein 1978, 1981; Newsome et al. 
2010). Furthermore, the isotopic composition of metaboli-
cally inert but continuously growing tissues such as baleen 
plates, tooth dentin, or vibrissae provides a sequential 
archive of ecological information over different timescales 
(Walker and Macko 1999). Isotopic variation can be used 
as a proxy of TNW, which is the sum of the within- (WIC) 
and between-individual (BIC) components of the niche (e.g. 
Newsome et al. 2009; Yurkowski et al. 2016). When other 
confounding factors that influence consumer isotope values 
can be constrained, such as movement across baseline iso-
topic gradients (Graham et al. 2010; Troina et al. 2020), this 
approach can be used to evaluate the relative prevalence of 
specialist versus generalist foraging strategies at the indi-
vidual level (Newsome et al. 2009, 2015; Vander Zanden 
et al. 2013).

Here we generated a δ13C and δ15N dataset from serially 
sampled teeth to quantify individual- and population-level 
niche components of three Guiana dolphin populations with 
different behavioral traits (i.e. social organization, home 
range, and spatial overlap) that live in contrasting ecologi-
cal contexts (i.e. sympatry with other dolphin species, and 
habitat use). Based on well-established theory, we hypoth-
esized that these ecological conditions will predictably 
influence the population TNW and degree of individual diet 
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specialization among the three Guiana dolphin populations. 
Our predictions for each of the three populations are that: (i) 
In Caravelas River, the absence of interspecific competition 
with other dolphin species enables Guiana dolphins to main-
tain a large TNW, which increases the opportunity for indi-
vidual diet specialization; (ii) In Babitonga Bay, the direct 
sympatry with franciscana dolphins and the high overlap of 
core areas and home range increases interspecific competi-
tion to produce a relatively narrow TNW with dietary gen-
eralists; and (iii) In Norte Bay, the sympatry of the Guiana 
dolphin population with two other dolphin species (fran-
ciscana and Lahille’s bottlenose dolphin), combined with 
a distinctive aggregation in a large and stable social group 
within a small home range, results in a narrow TNW and a 
population of dietary generalists.

Material and methods

Sampling sites and collection

Teeth were collected from 36 carcasses of Guiana dolphin 
specimens stranded at three localities: Caravelas River estu-
ary (n = 9 specimens) on the northeast coast of Brazil, as 
well as Babitonga (n = 11) and Norte Bay (n = 16) along the 
southern coast (Fig. 1a). The specimens are archived in the 
scientific collections of the Instituto Baleia Jubarte (IBJ), 
the Acervo Biológico Iperoba (ABI) at the Universidade da 

Região de Joinville (UNIVILLE), and the Aquatic Mammals 
Laboratory (LAMAQ) at the Universidade Federal de Santa 
Catarina (UFSC), Brazil.

The Caravelas River (17°30′S, 39°30′W) estuary is 
adjacent to the Abrolhos Bank, an extension of the con-
tinental shelf influenced by a large estuarine-mangrove 
complex (Herz 1991). The estuary system has the second 
largest mangrove forest along the northeast coast of Brazil 
with an area of ~ 66 km2 (Herz 1991) and is characterized 
by a diverse suite of habitats including coral reefs and sea-
grass beds (Rossi-Santos et al. 2007). The Guiana dolphin 
population from this site is composed of ~ 57–124 resident 
and transient individuals (Rossi-Santos et al. 2007, Cantor 
et al. 2012) organized in solitary and small groups of ~ 6 
individuals that are known to use all these habitats (Rossi-
Santos et al. 2006). Babitonga Bay (26°28′S, 48°50′W) is 
one of the largest estuarine complexes in southern Brazil 
encompassing 160 km2 (IBAMA 1998) and characterized 
by small islands, mangroves, rocky shores, and beaches. 
The local Guiana dolphin population is estimated at ~ 208 
individuals (Cremer et al. 2011) organized in small groups 
of 5–6 individuals that primarily use the innermost area 
of the bay (Cremer et al. 2011, 2018) but also occur in 
adjacent waters. Norte Bay (27°30’S, 48°32’W) is located 
between Santa Catarina Island and the mainland and com-
prises a protected area of ~ 250 km2 characterized by rocky 
shores, sandy beaches, and mangrove forests with oceano-
graphic features influenced by the adjacent open ocean 
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Fig. 1   a Location of the Guiana dolphin populations from Norte 
Bay (NB, 27°30′S, 48°32′W; red circles), Babitonga (BB, 26°28′S, 
48°50′W; yellow circles) and Caravelas River (CR, 17°30′S, 
39°30′W; green circles) along the Brazilian coast and the total of 

individuals sampled in each population; b Violin plots of tooth den-
tin Growth Layer Groups δ13C and c δ15N values for each population. 
Black circles are population mean δ13C and δ15N values and error 
bars indicate standard deviation
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(Cerutti 1996). The Guiana dolphin population in Norte 
Bay is estimated at ~ 130 individuals (L. Wedekin, unpub-
lished data) characterized by a single large and cohesive 
group restricted to the western area of the bay (Flores and 
Bazzalo 2004).

Sample preparation and isotope analysis

For 29 out of the 36 specimens, more than one tooth was 
available, which were used to estimate age based on count-
ing Growth Layer Groups (GLGs; Perrin and Myrick 1980) 
in dentine to guide the micromilling process for the col-
lection of subsamples for stable isotope analysis. We cut 
each tooth into a 3 mm longitudinal mid-section using a 
Buehler IsoMet® saw with a diamond-embedded blade. 
We then fixed this thick section in 10% formalin for ~ 12 h, 
rinsed the section with deionized water and decalcified it 
in a rapid decalcifier solution (RDO®, Apex Engineering 
Products Corporation, Aurora, IL) for 7–17 h; hydrochloric 
acid is the active component of RDO®. The time interval 
required for decalcification varied with the age of the indi-
viduals, with shorter times for younger individuals. Once the 
teeth were flexible and transparent, they were washed with 
running water and then cut into 25 µm thin sections using 
a freezing microtome. We stained the sections in Mayer’s 
hematoxylin, submerged them in an ammonia solution for 
a few seconds to intensify the coloration, and mounted on 
microscope slides with 100% glycerin (Hohn et al. 1989). 
Using a microscope, we took photomicrographs of each slide 
at 40–100 × magnification and GLGs were counted in the 
dentin by three observers without reference to biological 
data to avoid any possible bias in age estimates. To prop-
erly characterize within the individual component (WIC) 
of niche width, one must generate a longitudinal record of 
ecological (dietary) information. As older individuals have 
larger teeth containing more GLGs, we restrict our samples 
to adults males ≥ 6 years and/or with a body length greater 
than or equal to 170 cm, and females ≥ 5 years and/or with 
a body length greater than or equal to 164 cm (Ramos et al. 
2000; Rosas et al. 2003). By focusing on older individuals, 
we also constrained possible ontogenetic effects including 
the 15N-enrichment during the nursing period (Niño-Torres 
et al. 2006).

To prepare teeth for stable isotope analyses, we used a 
water-cooled diamond-blade saw to cut teeth in two mid-
longitudinal sections. To accentuate the definition of GLGs, 
we polished the longitudinal sections with successive sheets 
of sandpaper with decreasing grit sizes (340, 500, 600, 1200 
and 12,000). The inner surface of each tooth was immersed 
in 25% formic acid for 1.0–1.5 h, rinsed with deionized 
water and then air-dried for 24 h (Newsome et al. 2006). 
Such treatment does not influence the tooth’s isotopic 

composition because the surface portion of the tooth repre-
sents only a small fraction of the total sample.

We mounted the polished tooth on a glass slide and sub-
sampled ~ 1 mg of bulk dentin using a computer-guided 
micromill (Merchantek®) fitted with a 300 µm-diameter 
carbide drill bit at a depth of 250 µm. We milled five tracks 
from each tooth and due to the small size of Guiana dolphin 
teeth, sampling tracks reflecting older stages of an individ-
ual’s life closer to the pulp cavity contained more GLGs 
(mean = 5 GLGs per track) than tracks near the neonatal line 
representing the youngest years (mean = 2 GLGs per track). 
Despite the high precision provided by the micromill system, 
some factors such as the tooth size, and the conical arrange-
ment of the dentin layers in Guiana dolphins constrain the 
collection of enough powder from each GLG for isotope 
analysis. Several studies have shown that decalcification 
may not be necessary when measuring bulk dentin stable 
isotope values in teeth of modern odontocetes likely due 
to the low concentration of lipids and carbonates, and the 
similarity in δ13C values of dentin collagen and carbonate 
(Brault et al. 2014; Matthew and Ferguson 2014; Groom 
2018). Therefore, we chose to avoid sample loss associated 
with decalcification.

We collected a total of 180 powdered dentin subsamples 
(Caravelas River = 45; Babitonga Bay = 55; Norte Bay = 80), 
which were placed directly into tin capsules for carbon 
(δ13C) and nitrogen (δ15N) isotope analysis. We measured 
δ13C and δ15N values of these subsamples using a Costech 
4010 Elemental Analyzer (Valencia, CA, USA) coupled to a 
Thermo Scientific Delta V Plus (Bremen, Germany) isotope 
ratio mass spectrometer at the University of New Mexico 
Center for Stable Isotopes (Albuquerque, NM). Results are 
expressed in parts per thousand (‰) and delta notation (δ) 
using the equation: δsample = [Rsample/Rstandard − 1] 
* 1000, where Rsample and Rstandard are the 13C/12C or 
15N/14N ratios of the sample and standard, respectively 
(Peterson and Fry 1987). The standards are Vienna Pee Dee 
Belemnite limestone (VPDB) for δ13C and atmospheric N2 
for δ15N. The analytical precision based on the standard 
deviation of the standard laboratory replicas (Acetanilide) 
was ≤ 0.1‰ for both δ13C and δ15N. To ensure that our sam-
ples did not contain any 13C-depleted lipids, we also meas-
ured the C:N ratio of each sub-sample. Values ranged from 
2.8 to 3.6, well within the expected range that characterizes 
pure protein (Ambrose 1990).

Data analysis

As our samples were restricted to the last two decades, we 
did not apply a Suess correction. We also excluded the δ13C 
and δ15N values of the first GLG of each tooth from the 
analysis as they may reflect milk consumption during the 
nursing period (Niño-Torres et al. 2006; Rosas et al. 2010). 
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We first assessed variation in GLG δ13C and δ15N values 
among Guiana dolphin populations with a Gaussian general-
ized linear mixed model (GLMM) with a log link function 
that included sex as a covariate and individual as a random 
effect. Given that our data exploration suggested a lack of 
interaction between sex and population, we did not include 
interactive terms between these two factors to avoid over-
parameterization of the models. The model selection pro-
cedure was based on Akaike’s information criterion (AIC) 
and Akaike weight (Burnham and Anderson 2002) using the 
R package ‘MuMIn’ (Bartoń 2019). We checked for scaled 
residuals using the DHARMa package (Hartig 2018). The 
threshold for significance in all statistical tests was 95% 
(p < 0.05).

We measured the degree of individual diet specialization 
within each population following Roughgarden`s (1979) 
framework adapted by Bolnick et al. (2003), which parti-
tioned the total niche width of a population into two compo-
nents: the within-individual component (WIC) that reflects 
the average of individual niche widths, and the between-
individual component (BIC) that represents the variance 
among each individuals’ niche. We estimated TNW as the 
variance of δ13C and δ15N values of all individuals that com-
prise the population, BIC as the total standard deviation in 
δ13C and δ15N values of sampled individuals (Bolnick et al. 
2003), and WIC as the mean standard deviation in δ13C and 
δ15N values obtained along the longitudinal growth layers 
within individuals. Therefore, we used (1) the mean vari-
ability within individuals (WIC) as a measure of temporal 

consistency, which reflects how variable individuals are 
in their resource use through time, and (2) the degree of 
individual specialization (WIC/TNW) as the percent of 
within-individual component (WIC) of total niche width 
(TNW). Low WIC/TNW ratios (close to zero) indicate a 
higher degree of individual diet specialization (IS) and high 
values (close to 1) indicate a lower prevalence of individual 
specialization (Bolnick et al. 2003). We calculated TNW, 
WIC, BIC, and IS values using the R package ‘RInSp’ (Zac-
carelli et al. 2013). We ran Monte Carlo permutations to 
test whether observed IS values differed significantly from 
a random distribution of values calculated for 10,000 rep-
licate datasets. When the observed values were lower than 
the 95% confidence interval (CI) of the random distribution, 
they validated the null hypothesis that all individuals are 
generalists (Bolnick et al. 2002).

Results

We found no influence of sex on mean tooth GLG δ13C (esti-
mate = − 0.00463, se: 0.01065, z-value: − 0.43, p < 0.664; 
Model 1; Table 1) and δ15N values (estimate = -− 0.02696, 
se: 0.01780, z-value: − 1.51, p < 0.130; Model 1; Table 1). 
The GLMMs showed significantly lower δ13C values in 
Norte Bay compared to Caravelas River (estimate = 0.08628, 
se: 0.01194, z-value: 7.22, p < 0.001; Model 3; Table 1) and 
Babitonga Bay (estimate = 0.06643, se: 0.01269, z-value: 
5.24, p < 0.001; Model 3; Table 1), whereas δ15N values are 

Table 1   Generalized linear 
mixed models (GLMMs) 
ranked by the lowest Akaike 
Information Criterion 
(AICc). Relative support for 
the models is assessed by the 
difference in delta AIC and 
AIC weights, while the model’s 
goodness of fit is given by log-
likelihood (logLink); df denotes 
degrees of freedom

GLMMs df logLink AICc delta AIC AIC weight

δ13C
 Model 3 δ13C ~ population + (1|ID) 5 − 71.09 152.6 0.00 0.73
 Model 1 δ13C ~ population + sex + (1|ID) 6 − 71.00 154.6 1.99 0.27
 Model 2 δ13C ~ sex + (1|ID) 4 − 87.45 183.2 30.58 0.00

δ15N
 Model 1 δ15N ~ population + sex + (1|ID) 6 − 146.40 305.4 0.00 0.51
 Model 3 δ15N ~ population + (1|ID) 5 − 147.51 305.5 0.05 0.49
 Model 2 δ15N ~ sex + (1|ID) 4 − 182.34 373.0 67.56 0.00

Table 2   Within individual component (WIC), between individual 
component (BIC), total isotopic niche width (TNW) and individual 
specialization index (IS) for δ13C and δ15N values of Guiana dol-
phin populations from the Norte Bay, Babitonga Bay and Caravelas 

River. Estimated population size; number of individuals sampled in 
each population and the total number of sampling tracks (subsamples) 
obtained from each population are reported

Population Population size Individuals 
sampled

Total sam-
pling tracks

WIC BIC TNW IS

δ13C δ15N δ13C δ15N δ13C δ15N δ13C δ15N

Norte Bay  ~ 130 16 80 0.072 0.223 0.204 0.098 0.276 0.321 0.261 0.693
Babitonga Bay  ~ 208 11 55 0.069 0.100 0.128 0.384 0.198 0.485 0.349 0.207
Caravelas River  ~ 57–124 9 45 0.076 0.254 0.162 1.266 0.239 1.521 0.320 0.167
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significantly higher in Babitonga (estimate = 0.29420, se: 
0.02320, z-value: 12.68, p < 0.001; Model 1; Table 1) and 
Norte Bay (estimate = 0.30631, se: 0.02190, z-value: 13.99, 
p < 0.001; Model 1; Table 1) compared to Caravelas River 
population. δ13C values ranged from − 15.4 to − 13.3‰ 
(mean ± SD: − 14.0 ± 0.5‰) for the Norte Bay population; 
from − 14.2 to − 12.3‰ (mean ± SD: − 13.1 ± 0.4‰) for 
the Caravelas River population, and from − 13.8 to − 12.0‰ 
(mean ± SD: − 12.9 ± 0.4‰) for the Babitonga Bay pop-
ulation (Fig. 1b). δ15N values ranged from 9.4 to 14.5‰ 
(mean ± SD: 11.6 ± 1.2‰) for the Caravelas River popula-
tion, from 13.8 to 16.6‰ (mean ± SD: 15.5 ± 0.7‰) for the 
Babitonga Bay population, and from 14.5 to 16.9‰ for the 
Norte Bay population (mean ± SD: 15.8 ± 0.5‰) (Fig. 1c).

The WIC, BIC, TNW, and individual diet specialization 
index for δ13C values were similar among all Guiana dolphin 

populations. For δ15N, WIC was higher for the Caravelas 
River and Norte Bay populations, while BIC and TNW were 
higher for the Caravelas River population (Table 2, Fig. 2). 
The Monte Carlo resampling procedure we used to evaluate 
the individual diet specialization relative to a null model 
(population of generalist individuals) revealed a lower preva-
lence of individual specialization than expected by chance 
for δ13C values from all populations (Fig. 2a–c, g) and for 
δ15N values for the Caravelas River and Babitonga Bay 
(p < 0.01) (Fig. 2d–f, h). The lack of significance (p = 0.18) 
for individual specialization at Norte Bay relative to the null 
model suggests that this population is comprised of more 
generalist individuals whereas the Caravelas River and 
Babitonga Bay populations are comprised of more individ-
ual dietary specialists.
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Fig. 2   δ13C (a–c) and δ15N (d–f) values in sequential growth layer 
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Discussion

There is a longitudinal trend in marine environments where 
benthic nearshore habitats are more 13C enriched in com-
parison to pelagic and offshore habitats (Clementz and Koch 
2001; Lesage et al. 2001; Rossman et al. 2016). The overlap 
in δ13C values among the three Guiana dolphin populations 
suggests they use habitats fueled by similar source(s) of pri-
mary production. Thus, our discussion is focused on patterns 
in δ15N niche metrics that differed among populations indi-
cating individual-level variability in prey consumption and 
varying degrees of individual dietary specialization. These 
results indicate that although the Guiana dolphin is typically 
considered to be an opportunistic dietary generalist (Daura-
Jorge et al. 2011; Cremer et al. 2012; Rodrigues et al. 2020), 
variation in the diet at the individual level may arise from 
distinct ecological contexts.

A diverse set of oceanographic and ecological factors that 
vary along a tropical to subtropical gradient likely influ-
ences the observed variation in δ15N niche metrics among 
the three populations. For example, Babitonga Bay and 
Norte Bay are highly productive areas due to the confluence 
of the northward flow of cold nutrient-rich waters of the 
Malvinas Current and the southward flow of oligotrophic 
tropical waters of the Brazil Current (Ciotti et al. 1995), with 
additional nutrient inputs from the La Plata River and Patos 
Lagoon estuaries (Carreto et al. 1986; Muelbert et al. 2008). 
The freshwater discharged by the La Plata River induces 
a large-scale buoyant plume (i.e. the Plata Plume Waters; 
Piola et al. 2008) that fertilizes the southern Brazilian shelf 
area and fuels one of the most productive fisheries in Brazil 
(Moreira da Silva 1971; Castello et al. 1990). Although the 
Caravelas River is surrounded by productive ecosystems 
(i.e. coral reefs and mangrove forests) and its physiography 
provides an area for phytoplankton production (Travassos 
et al. 2006), it is also primarily influenced by warm nutrient-
poor waters of tropical Brazil Current that limit biological 
productivity (Ekau 1999) when compared to Norte Bay 
and Babitonga Bay. The Caravelas River Guiana dolphin 
population has the broadest TNW for δ15N, largest between-
individual component of a diet, and the highest degree of 
individual diet specialization (lowest WIC/TNW) compared 
to the other populations. These niche metrics suggest a gen-
eralist population comprised of individual dietary special-
ists and support the niche variation hypothesis (Van Valen 
1965), in which the release from interspecific competition 
with other dolphin species promotes niche expansion via 
greater inter-individual variation. Another factor that likely 
contributed to this relatively large TNW is that even though 
individuals use a smaller area (~ 66 km2; Herz 1991) in com-
parison to Babitonga Bay (~ 160 km2; IBAMA 1998) and 
Norte Bay (~ 250 km2; Cerutti 1996), this small population 

(~ 57–124 individuals) is composed of a mixture of resident 
and transient individuals (Rossi-Santos et al. 2007; Cantor 
et al. 2012) that forage in solitude or in small groups (Rossi-
Santos et al. 2010) in a diverse set of habitats in the river and 
adjacent coastal waters (Rossi-Santos et al. 2007).

Previous studies based on stomach content analysis and 
stable isotope analysis showed some degree of overlap in 
the diet of the two dolphin species that occupy Babitonga 
Bay, with 13 shared prey species that represents 62% and 
46% of the total prey spectrum consumed by franciscanas 
and Guiana dolphins, respectively (Cremer et al. 2011; Pai-
tach 2015). Babitonga Bay is an estuary with high produc-
tivity (IBAMA 1998; Schettini et al. 2002; Brandini et al. 
2006; Costa and Souza-Conceição, 2009; Gerhardinger et al. 
2020), and the adjacent coastal area is situated in produc-
tive subtropical waters (Cioti et al. 1995; Muelbert et al. 
2008). However, some areas of its surroundings are densely 
populated and have great industrial activity, resulting in 
water pollution, intense boat traffic, and illegal modifica-
tion of mangrove habitats. Along with this, the bay has two 
large port areas, both close to the access channel. These 
factors influence the distribution of prey and the distribution 
of franciscana and Guiana dolphins’ populations, causing 
both to have their main concentration area in the central 
portion of the bay (Cremer and Simões-Lopes 2005; Cre-
mer et al. 2011; Cremer et al. 2018). The strong interspe-
cific competition with the franciscanas may be the reason 
why the Babitonga Bay Guiana dolphin population has a 
much lower TNW (0.485) in comparison to Caravelas River 
(1.521) where Guiana dolphins occur in allopatry. Despite 
the relatively low TNW, the Guiana dolphin population 
at Babitonga Bay has a similar degree of individual diet 
specialization (Table 2) compared to the Caravelas River, 
because the former population has the lowest estimate of 
WIC of all the populations examined. A possible explanation 
for this pattern is that some individuals of the Babitonga Bay 
Guiana dolphin population selectively forage on the prey of 
high nutritional quality (Mugil curema and Micropogonias 
furnieri) that occur in low abundance within and near the 
bay (Cremer 2012). In the Cananeia Estuary, for example, 
females accompanied by calves specialize in a hunting tech-
nique to capture mullet species on sloping beaches. Using 
specialized skills to hunt in littoral habitats likely decreases 
the amount of energy required to capture prey while ena-
bling them to closely monitor their young in shallow areas 
(Santos 2010).

The lowest levels of TNW, BIC, and degree of individual 
diet specialization were observed in the Norte Bay Guiana 
dolphin population, which can be explained by a series of 
fine-scale ecological factors. While this population inhab-
its productive subtropical waters, it is also restricted to 
the western margin of the bay (Flores and Fontoura 2006; 
Wedekin et al. 2007) and does not use the most productive 



Oecologia	

1 3

eastern areas adjacent to mangrove and estuarine habitats 
(Wedekin et al. 2007). According to the optimal foraging 
theory (MacArthur and Pianka 1966), this limited home 
range may impose limits on their foraging strategies, forc-
ing individuals to behave more opportunistically in response 
to seasonal fluctuations in resource availability. One likely 
explanation for the limited home range of Guiana dolphins 
in Norte Bay is the presence of Lahille`s bottlenose dol-
phins, which is believed to contribute to the distinctive social 
organization of the former species characterized by a single 
large, stable, and cohesive social group (Flores and Bazzalo 
2004). Aggressive behaviors of this larger species (lengths 
of 316.5 cm for females and 351.6 cm for male bottlenose 
dolphins compared to 164 cm for females and 170 cm for 
male Guiana dolphins; Ramos et al. 2000, Rosas et al. 2003, 
Venuto et al. 2020) towards Guiana dolphins were previously 
reported in Norte Bay (Wedekin et al. 2007), and recent 
isotope-based evidence suggests that these delphinids com-
pete for resources in this area, specifically demersal mullet 
species (Mugil spp.) (Teixeira et al. 2021). Thus, this unique 
social pattern relative to other Guiana dolphin populations 
could be a defensive behavior and/or a solution to reduce 
competition with bottlenose dolphins. Alternatively, it could 
result from adverse environmental conditions inherent to the 
southern limit of the species distribution (Lesica and Allen-
dorf 1995).

Previous studies based on stomach content analysis 
showed that Guiana dolphin populations consume a diverse 
diet, concluding that Guiana dolphins are generalists and 
opportunistic foragers (Daura-Jorge et al. 2011; Cremer et al. 
2012; Rodrigues et al. 2020). However, stomach content data 
provides a snapshot of diet composition immediately prior 
to death and as such are not suitable for assessing individual 
diet specialization over longer time periods. Our isotopic 
analyses expand these previous findings by revealing that the 
total niche width of each Guiana dolphin population and the 
degree of individual diet specialization are context-depend-
ent, and so likely arise from ecological drivers including 
latitudinal variation in productivity, inter- and intraspecific 
competition, and the home range of each population. How-
ever, our approach also has two key limitations. First, we 
restricted our samples to mature individuals to obtain more 
subsamples, which resulted in a small sample size within 
populations as well as an uneven sample size among popu-
lations, as fewer mature individuals were available in some 
areas, which may limit direct comparisons. Second, since it 
was not possible to directly evaluate the diversity and abun-
dance of prey sources in each area, we relied on the litera-
ture to assess variation in ecological opportunity available to 
each population. Yet, our results show how ecological fea-
tures can influence niche metrics and encourage researchers 
to explore a wide range of potential drivers of varied forag-
ing strategies within and among populations other than those 

studied. Given that ecological opportunity is a key driver of 
individual diet specialization (Araújo et al. 2011), and our 
data suggest it is an important factor for explaining niche 
variation among Guiana dolphin populations, future studies 
should further explore latitudinal gradients in resource avail-
ability to refine our understanding of the foraging tactics 
used by these cryptic predators. This will cast more light 
on how resource abundance and richness may promote and 
maintain individual diet specialization in cetacean species 
that are restricted to coastal areas in which resource avail-
ability is increasingly altered by human activities.
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