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ARTICLE INFO ABSTRACT

Keywords: Ocean currents, driven by gravity, wind, and water density, disperse marine biota worldwide, often leading
Marlne_ wildlife species to shorelines alive or as carcasses. These carcasses provide vital information about species’ health con-
Stranding ditions and threats within their habitats. Marine animal strandings thus offer crucial insights into the ecological
Postmortem interval . c s . . . P . . e .

Backtrackin implications of population mortality. This research is instrumental for conservation efforts and identifying trends
Death site 8 and threats. Scientists use human and animal forensics approaches to trace the origins of beached bodies. The

capability to backtrack carcass drift and estimate death sites helps evaluate anthropogenic impacts. This infor-
mation also forms the basis for legal applications and gives ecological indicators for marine megafauna con-
servation. Using backtracking in forensic ecology for conservation research presents expansive investigative
opportunities. This paper offers a comprehensive review of: 1) Physical and environmental processes; 2) Drift
applications; 3) Marine megafauna examples; 4) Forensic principles; 5) Postmortem intervals; 6) Marine
megafauna backtracking. We further discuss these findings’ potential conservation applications for endangered
species. Our review aims to enhance understanding of coastal animal distribution, estimate mortality rates from
strandings, explore seasonal variations for beach monitoring programs, and investigate anthropogenic impacts.

Anthropogenic impacts

1. Introduction “left-to-die-boat” report that refers to a tragic incident involving a boat

carrying migrants or refugees in the Mediterranean Sea in 2011 [8]. In

Forensic ecology, a crucial and necessary branch of ecology, has been
proposed for inclusion in ecological education [1]. However, mastering
ecological knowledge is a complex and time-consuming process, and
effective forensic ecology practitioners are those with extensive expe-
rience [2]. Forensic ecology integrates various environmental sciences
and applies them in areas such as wildlife, environmental crime, and
investigating unexplained deaths. [3]. According to Nero et al. [4], few
forensic backtrack studies utilize physical oceanographic models and
virtual trajectories to propose potential sources of drifting carcasses
[5-7]. Principles of forensic oceanography are applied to the base of the
SAR (Search And Rescue) approach, as observed in the notorious

addition to forensic ecology, investigations of wildlife crimes demand
the principles of forensic veterinary medicine, which closely follow
much of those used in human forensic medicine [9]. More recently,
Stolen presents forensic science’s applications and limitations in marine
mammalogy [10]. The significance of forensic ecology in marine
megafauna conservation cannot be overstated, as it provides crucial
insights into the ecological implications of population mortality and
helps identify trends and threats.

Evaluating the potential anthropogenic impact on a particular ma-
rine vertebrate species’ mortality event from beach monitoring pro-
grams is possible; however, it is not easy [11,12]. There is a dilemma
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related to the fact that strandings do not depend only on mortality rate
but also on environmental factors such as pressure and temperature,
which influence the floatation of carcasses, and wind and ocean cur-
rents, which influence their delivery to the coast [13]. Environmental
factors vary over time, and differences between seasons can provoke the
absence of strandings, even with high at-sea mortality rates [14,15]. To
estimate mortality, evaluate impacts, and solve the difficulties
mentioned above, the multidisciplinary forensic ecology approach is
organized into three pillars: (i) Postmortem interval or PMI - that is, the
estimation of the time since death based upon the decomposition stages
of carcasses, an essential measurement to define how long beached an-
imals were drifting before stranding [4,7,12,16,17]; (ii) Backtracking
drift carcasses — by taking into account environmental forces that drive
the hydrodynamic movements in a reverse way [4,7,12,16-19]; (iii)
Distribution of death sites — within PMI and backtracking, the estimation
of death sites contributes to understanding the source of animals [12,20,
21].

These pillars contribute to a forensic ecological approach that may
support necropsy investigations and understanding the sources of car-
casses encountered on shorelines. This is especially useful in the cases of
animals found with anthropogenic signs of human impact, like collisions
or entanglements, as an investigation can deduce and plot the location of
the incidents. Considering the environmental influences over stranding
rates, evaluating distinct scenarios may also provide a better under-
standing of before and after anthropogenic disasters under differing
weather and ocean circulation conditions.

This article aims to defend a promising multidisciplinary approach to
forensic ecology integrating veterinary, ecology, and oceanography and
to discuss its potential application for the conservation of marine
megafauna and other endangered coastal species.

2. Methods

The review was based on a narrative approach. The search for ref-
erences was performed on Scholar Google and Scientific Electronic Li-
brary Online — SciELO, with no restriction for the year, combining
relevant keywords, their synonyms, and related terms. They are marine
megafauna, cetaceans, carcasses, sinking, floating, drifting, stranding,
beaching, time since death, postmortem interval, time after death,
decomposition, decay, backtracking, back-calculation of carcass drift,
death site estimation, anthropogenic impacts evaluation. A theoretical
framework and the specific context of the topic under investigation
guided the selection of these keywords.

This review will present the current advancements of each topic in a
logical order, serving as sequential steps to enhance the reader’s un-
derstanding of forensic ecology as a valuable tool for conservation.

3. Results
3.1. Physical and environmental processes

Basic physical processes related to floating carcasses adhere to the
principles of kinetics. The four principal forces operating on a floating
object or carcass are the weight force, the Archimedes force, the active
drag force in the water, and the air dynamic drag force. The first two
forces give the emerged/submerged ratio, and the last two are respon-
sible for transporting the floaters on the horizontal plane [22,23]. Ki-
netic energy can be used as a physical descriptor of the transport process
of a carcass by wind friction over its surface above the water and ocean
current friction over its surface below the water [7].

Some studies correlate the effects of winds on surface currents
[24-27], and other studies include tides [7] and waves [28,29] in
models. Ocean currents can be understood by launching drift cards [30],
using a drifter equipped with a Global Positioning System (GPS) [4,17],
combined with wooden drifters [31]. Also, the ocean currents can be
investigated by using equipment such as an acoustic Doppler current
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profiler (ADCP) [32-34] or even by remote sensing modeling [35,36]. It
is well known that the geographic location and distance from the coast
may affect the stranding probability [37-39], as well as intrinsic prop-
erties of the body itself, environmental factors such as water tempera-
ture, the action of aquatic scavengers, and the presence of rocks, among
others, are all interrelated with the resulting significant variability [40].
To access physical and environmental processes regarding marine
megafauna, see Table 1 in the supplementary material.

3.2. Applications of oceanic and drifting modeling

Oceanic modeling provides applicability in numerous contexts, as
environmental forces orchestrate the drift movement from ichthyo-
plankton [41-43], or micro-plastics [44], to icebergs [45-47], ships
[48], or containers [22,49]. Junior et al. [50] used the dispersion of solid
objects from a container disaster to understand the regional ocean cir-
culation, and this knowledge helped to define where to anchor a whale
carcass and avoid stranding on public beaches in case of escape from the
attaching site. The following sections will present examples of drifting
studies for marine megafauna and human forensics. Another important
application is oil spill dispersion [51-53] and monitoring marine
floating waste [50,54]. Ocean circulation is prominent in the search and
rescue exercises for castaways [23,25,55]. The following sections will
present examples of drifting studies for marine megafauna and human
forensics. To access applications of oceanic and drifting modeling pro-
cesses regarding marine megafauna, see Table 1 in the supplementary
material.

3.3. Marine megafauna drift dynamics: insights and implications

Carcass-recovery rates are an essential goal for evaluating anthro-
pogenic disasters [11]. Nevertheless, they are affected by the types of
forces presented, and, under some factors, the carcasses are transported
far from the coast [6,14,15,29].

In 2012, Peltier and colleagues [7] presented a review of twelve
publications related to the launch of carcasses, strandings, and discovery
rates for marine animals, with publications ranging from 1977 to 2006
and covering studies related mainly to seabirds [37,38,56,57-59], but
also with sea turtles [6,14], and sea otters [60,61]. The references,
species, locations, types of experiments, and stranding rates were eval-
uated. The stranding rate varied considerably from 0.3% to 95. Exper-
iment characteristics were responsible for the wide range of stranding
rate results, especially drop point and distance to the coast, oceanic
circulation patterns, wind regime, and body composition of the species.
Other studies with seabirds have been developed to assess carcass re-
covery rates and incidents in the oil industry [62-64]. Kenow et al. [19]
applied a backtracking approach for beach carcasses to describe a spatial
track of botulism mortality and offshore toxin source locations.

Putman et al. [65] presented a study about oil spill impacts on sea
turtles, and other studies have described ecological aspects of the drift of
turtle carcasses [4,6,16-18,66] and have tracked moribund turtles [28].
Cook et al. [67] used drift studies to understand seasonal variability in
sea turtle stranding patterns with wooden effigies deployed for
comparison.

Regarding marine mammals, Williams et al. [11] systematized in-
formation on 14 cetacean species that occur in the Gulf of Mexico. The
authors presented the results of population estimates, estimated annual
mortality, and carcass-detection rates. The latter presented an average of
2% and 0.4% when pooled across all species. The minimum
carcass-detection rate was 0.05% for the pantropical spotted dolphin
(Stenella attenuata), and the maximum was 6.5% for the Cuvier’s beaked
whale (Ziphius cavirostris) [11]. For Carretta et al. [68], the carcass re-
covery rate for bottlenose dolphins (Tursiops truncatus) that occur along
the US West Coast and Baja California was 25%. The recovery rate for
the franciscana dolphin (Pontoporia blainvillei) in Brazil was 7.6% [29]
and between 22% and 29% [69] in a drifting experiment. Young et al.
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[70] observed that beaching rates for sea otters (Enhydra lutris) were
identical, comparing carcasses (69.7%) and similar drifters used
(66.7%).

Since 2012, a series of articles has emerged exploring the research on
cetaceans in the context of stranding events and carcass origins. These
articles discuss relevant issues related to impact assessment, public
policies, and biodiversity conservation [7,12,21,39,71,72]. In 2012,
Peltier and colleagues [7] overviewed strandings as indicators of the
cetacean population at sea through carcass drift modeling. In 2013,
Peltier [39] and researchers from seven nations, including France,
Denmark, Netherlands, Germany, United Kingdom, and Belgium, pre-
sented the theory of the null hypothesis adapted to the context of the
space-time analysis of strandings. This approach aimed to assess
anomalies between expected versus observed strandings. Regarding
carcass drift modeling, these authors integrated European data to ensure
a better understanding of biological phenomena than segregated na-
tional interpretations alone. Peltier et al. [71], in 2014, aimed to
improve the ecological significance of the common dolphin strandings
by determining the origin using the drift forecasting model. Detecting
anomalies at the origin of strandings is highlighted as an area of high
relative source or mortality for the species. The results were consistent
with current knowledge about the distribution of common dolphins and
provided a new view on strandings as indicators of this cetacean pop-
ulation. In 2015, Peltier and Ridoux [72] presented a framework for
using a drift prediction model to interpret stranding time series. The
context can be used everywhere in the world ocean, where carcasses of
dead megavertebrates are susceptible to becoming beached, and for
various marine species, including cetaceans, seabirds, and sea turtles. In
2016, Peltier and colleagues [20] estimated dolphin bycatch levels in
the northeast Atlantic from stranding records of the short-beaked com-
mon dolphin. They developed cartographic indicators inferred from
strandings to inform mortality in fisheries and to estimate overall
bycatch mortality from strandings recorded along the French and British
coasts of the Bay of Biscay and the Western Channel, again using esti-
mations based on reverse drift modeling. The monitoring of beaching
remains one of the most efficient ways to evaluate the problem. In 2019,
Peltier and colleagues [21] discussed the importance of marine mammal
strandings for evaluating ship strikes. The following year, the same
authors tested an approach that could help identify the fisheries
potentially involved in each stranding event [12]. Furthermore, in 2021,
the Peltier et al. [73] study aimed to identify positive spatial and tem-
poral correlations between the likely origins of bycatch-stranded com-
mon dolphins in the Bay of Biscay, estimated from a mechanistic drift
model. All those publications provide outstanding contributions to the
knowledge of marine megafauna drift application; see Table 1 in the
supplementary material.

3.4. Forensic applications in oceanic contexts

An interesting forensic application was the experiment of using
floating plastic spheres to complement the assessment of the possible
origin of a human corpse [5]. The locations of drowning victims are
explained by ocean currents [40,74-77]. According to Pampin and
Rodriguez [40], this environmental approach has rarely been evaluated
from a forensic point of view in the medicolegal literature.

Unnikrishnan et al. [78] discussed designing, implementing, and
testing an underwater human detection system that spots the victim
drifting or drowning in freshwater ecosystems. Mateus et al. [76] dis-
cussed the shortcomings of the modeling approach and suggested ways
to improve the skill of such numerical tools in predicting body drift after
drowning accidents. Delhez [79] defended a thesis with an experimental
study to characterize the hydrodynamic properties of human-body
shape dummies and set up a primary computational tool designed to
simulate drift in an open channel.

Several scholars have applied multidisciplinary forensic practices
that can be similarly applied to humans and animals. Hau and Hamzah
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[80] reviewed the decomposition process and postmortem changes. On
the one hand, the primary human forensics principles serve as examples
for veterinary applications [9,81] or ecological purposes [10]. On the
other hand, research carried out with an ecological approach and using
animals (mouse and swine as models) have been widely used to verify
comparison parameters for the human body. Some examples were
mentioned by Ururahy-Rodrigues et al. [82] for the terrestrial envi-
ronment and aquatic environments; some studies involve pig carcasses
as experimental models [83-85].

Several forensic death dating systems have been developed in the last
few years, resulting in advances in thanatology and thanato-
microbiology, such as metagenomics analysis [86,87]. Another post-
mortem interval approach is forensic entomology [88,89]. Although this
approach could be detected from floating corpses found at the waterside
of a reservoir [90], it is unviable for marine megafauna as the flies do not
access the carcasses while drifting offshore. When flies are found in a
beached carcass, it may reveal the time since stranding and not the PMI.

The place where a carcass strand does not precisely correspond to the
death site, and da Cunha Ramos et al. [69] present considerations about
decomposition codes and distances based on marked drifters. Two as-
pects must be considered when estimating death sites: PMI and back-
tracking [4,7,16,17]. Reneker et al. [91] published a report on preparing
sea turtle carcasses for at-sea drift experiments. Schultz et al. [92] placed
sea turtle carcasses in cages at varying water depths and temperatures
and used cameras with temperature-depth-orientation recorders to
document decomposition and buoyancy progression, and results were
compared with laboratory predictions. A backtracking model for sea
turtles considering water temperature, depth (pressure), bathymetry,
and postmortem condition was used to estimate probable mortality sites
and heatmaps for death areas for Kemp’s ridley and green sea turtle
carcasses in the Northern Gulf of Mexico [18].

Strong laws have improved the management of marine mammal
populations, but every year, injury and death cases warrant forensic
investigation [10]. Several stranding events were attributed to the ef-
fects of underwater sound on cetaceans [93]. The case involving 17
cetaceans in the Bahamas following a U.S. naval operation helped to
establish the plausible cause of sound exposure from military sonar
operations on at least four species [94,95]. Quirds et al. [96] and
Velazquez-Wallraf et al. [97] have also developed gas sampling meth-
odologies to analyze decompression sickness. Another complementary
approach can be achieved by visualizing noise-induced hearing loss in
mass-stranded cetaceans, published by Morell et al. [98]. Still, regarding
forensic methodologies, a diatoms detection test in bone marrow has
been used on cetaceans and sea turtles to verify drowning events [99].
The theme of forensic science in marine mammalogy, its applications,
and its limitations is well explored by [10], which also overviews the
laws concerning protecting marine mammals.

3.5. Decomposition codes and postmortem interval (PMI)

Necropsy provides diagnostic and tissue samples for several exams
and research associated with dead animals, but it is limited by the
conditions in which the carcasses are encountered. The state of
decomposition determines whether samples can be used, and protocols
guide sample collection [100]. Five morphological decomposition codes
were proposed by Kuiken and Garcia-Hartmann [101] and are generally
accepted [100,102,103]. Code I is for alive animals (becomes code II at
death), code II is when the carcass is highly fresh (no bloating), code III
is for moderate decomposition stage (bloating, skin peeling, organs still
intact), code IV is for advanced decomposition stage (major bloating,
organs beyond recognition), and code V is when no organs are present.

Although this classification system is universally accepted, the PMI
between codes will not be the same globally. The rate of change between
decomposition codes will vary depending on regional environmental
conditions, especially temperature. The processes are considerably
delayed at low temperatures compared to tropical areas. The lower
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temperature in the abyssal regions has been one of the factors that may
explain the non-return to the surface of some carcasses, in addition to
the high pressure and consumption by scavengers [13]. On the other
hand, in shallower, warmer waters, most likely, carcasses emerge
quickly and start to drift [13,69]. According to Schultz et al. [92], sea
turtle carcasses deployed in waters > 30 m depths with temperatures <
22°C did not float and floated sooner in < 20 m at > 24°C.

The necropsy of marine megafauna is limited to examination and
findings within the carcass since the death site is not usually accessible
[10]. Estimating the death site would constitute an additional forensic
tool for investigation, especially when there is associated criminal or
anthropogenically impacted evidence. Nevertheless, it is essential to
understand the temporal patterns associated with decomposition rates,
as they can vary considerably between regions and seasons.

The time since death given by the PMI becomes a critical forensic
approach to addressing the site of death, considering that the drift path
starts when the carcass emerges to the surface and ends at the stranding
site [4]. With the decomposition patterns of the carcass, it is possible to
measure how long the carcass drifted before stranding [7]. Decompo-
sition studies in cages are an excellent parameter for decomposition
kinetics over time [7,16,104].

An alternate way to classify decomposition stages is based on
external criteria comparing tagged carcasses left to drift in natural
conditions and the morphological aspects at the recovered stranding site
of known duration [7,104]. Moore et al. [13] described a short review
where, according to some authors, bone disarticulation could provide a
reasonable reconstruction of time since death. For human bodies,
Franceschetti et al. [105] investigated postmortem changes in drowning
victims in the Mediterranean Sea. Two observers performed a retro-
spective study on the autopsy photographic records of 184 bodies. The
postmortem changes were evaluated according to facial, body, limb, and
total aquatic decomposition scores. Boonmayaphan and Butrat [106]
used postmortem macroscopic scores in rats to assess gross appearances
for general changes in eyes, skin, livor mortis, decomposition,
displacement, and alterations of the internal organs. For cetaceans, vi-
sual criteria as a percent of skin, tissue, and bones left on fins, head, and
body were used to determine the time since death [104], and a grid
overlaid on a carcass picture was used to help determine the percentage
of skin and tissue loss [7].

Once criteria based on the experiment have been achieved, extrap-
olation by photographic comparison could provide a reasonable PMI
classification for a large bank of stranding image catalogs [7,104].
Before considering using carcasses for decomposition studies, it is
important to consider the freezing effect related to the preparation of the
animals [104,107]. When a sea turtle or cetacean dies, it typically sinks,
starts decomposing, and will eventually float to the surface due to the
accumulation of internal gases [13,92]. The rate and duration of these
processes that allow estimation of time since death once carcasses are
recovered are explored by Schultz et al. [92]: the carcasses that became
buoyant in > 30 m depths tended to float for < 24 hours before sinking
again and, therefore, it is unlikely to have enough time to drift to shore
[92]. To access decomposition and postmortem interval studies
regarding marine megafauna, see Table 1 in the supplementary material.

3.6. Backtracking as forensic applications in marine megafauna studies

Backtracking involves tracing the reverse trajectory of carcasses from
the stranding point back to the death site. However, this approach ne-
cessitates a comprehensive understanding of decomposition processes
and the duration of postmortem flotation [104]. The first study using
this concept with marine megafauna was presented by Peltier et al. [7].
Additionally, Nero et al. [4] demonstrated the applicability of reverse
drift based on the movements of a single turtle carcass monitored by
satellite GPS. The observed drift pattern allowed for the extrapolation of
a long historical series of strandings, enabling the mapping of turtle
death sites across different months in Mexico’s northern Gulf. Kenow
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et al. [19] used backtracking to trace the origin of the botulinum toxin
that affects the common loon in northern Lake Michigan. Santos et al.
[16] presented a general sea turtle carcass oceanographic drift model to
estimate likely mortality locations from stranding turtle records within
the Chesapeake Bay, Virginia. Their study estimates the likely locations
of sea turtle mortality using the starting points of particle trajectories
arriving at the stranding site at the correct time and decomposition state.
Simulating backward drift for moribund turtle trajectories was studied
by Liu et al. [28]. Cook et al. [67] and Nero et al. [18] continued
advancing the study of the backtracking drift of sea turtle carcasses in
the same way as presented in Nero et al. [4].

The backtracking approaches vary between authors; each study
considers a particular type of modeling system, including different
environmental components and specific software. For Peltier et al. [7,
73], the drift of cetacean carcasses was modeled with the drift prediction
model MOTHY (Modeéle Océanique de Transport d'HYdrocarbures), a
program developed by the National Météo-France forecast center to
predict the drift of oil slicks but later adapted to predict the drift of solid
objects including human bodies in the context of maritime safety. Nero
et al. [4] used surface currents and wind forcing to estimate leeway and
subsequent carcass drift backtracking through the AMSEAS (American
SEAS) implementation of the NCOM (Navy Coastal Ocean Model).
Kenow et al. [19] developed a neural network model using Matlab®,
current and wind velocity vectors, and wave forces as the input vari-
ables. Santos et al. [16] used the Ichthyop software, first developed to
derive ichthyoplankton dynamics, but that has been used for several
other purposes, as can be accessed in the "Publications" section of the
program’s website, where more than 150 articles developed since 2002
are available. Ichthyop also develops in open code; the source code can
be run in the R language [42]. Liu et al. [28] have used the FVCOM, a
predictive, unstructured grid (Finite-Volume, free-surface, three-di-
mensional primitive equations Community Ocean Model) developed
originally by Chen et al. [108]. It includes tidal constituents and as-
similates remote observations of sea surface heights and temperatures.
Therefore, backtracking is a recent forensic technique in full develop-
ment and very promising to complement ecological studies related to
marine megafauna mortality. To access backtracking as forensic appli-
cations for marine megafauna, see the resume Table 1 in supplementary
material.

4. Discussion

Research on stranded animals often focuses on necropsy, pathology,
and biological sampling to assess health and environmental contami-
nants. Other ecological topics related to strandings include species
abundance, seasonal frequency of occurrence, and the distribution of
biological aspects such as sex, size, and age, which have been exten-
sively studied worldwide [100,108]. Nevertheless, another type of
research regarding the history before strand events, the estimation of
death sites, requires a forensic analysis in an ecological context. This
approach remains underexplored but has significant potential for eval-
uating anthropogenic impacts, as argued by Peltier et al. [12,20,21].

As revealed by Nero et al. [4] and by Santos et al. [16], time since
death within backtracking offers a forensic ecology valuable tool for
achieving biological answers, such as death sites and population mor-
tality indicators. This approach can address conservation knowledge
regarding how human activities impact marine megavertebrates [20].
Although there are challenges highlighted by Peltier et al. [21]
regarding the monitoring of whale strikes, the analytical forensic
perspective on the pre-stranding period is crucial. We can imagine a
whale found with extensive blunt injuries and clear signs of a collision.
Several important questions may arise: Where did the accident occur?
Can the accident site be determined in terms of location and time? Does
the accident site coincide with ship routes? Can the backtracking drift
carcass method be utilized to assess the impact of shipping companies on
cetacean populations?
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Since strikes on large whales generate internal injuries or cuts on the
back [109] and floating tends to occur with the belly up [13], accessing
the dorsal portion during beach necropsy can be challenging. In addition
to the various stages of decomposition, determining the cause of death
presents a significant challenge. Therefore, developing a tool to estimate
the location of carcasses becomes crucial in mapping the sources of
impacts that may affect marine megavertebrate populations. Previous
studies have suggested using the backtracking carcass drifting technique
to predict death locations resulting from fisheries-induced impacts on
dolphins [12,20,73] and sea turtles [17] using the backtracking carcass
drifting technique. This technique can also help identify entangled an-
imals that strand near protected areas or fishing exclusion zones,
enabling the detection of illegal fishing activities and formulating
effective conservation strategies. Backtracking can also be utilized to
investigate other anthropogenic activities. For example, it can be used to
trace the drift of individuals back to the source of impact in seismic
surveys. Additionally, it can help assess the impact of pollution resulting
from environmental disasters.

This forensic ecology approach demands a first step: the ability to
estimate the time of death. Difficulties must be considered; for example,
carcasses found on beaches do not have a fixed location due to ocean
dynamics along beaches and tide action. For marine animals, a quick
evaluation or immediate pictures must be captured immediately,
avoiding postmortem alterations due to sun exposure. Collecting small
carcasses for postmortem examination must be conducted as soon as the
carcass is found. The carcasses present different stages of decomposition,
usually highly decomposed, sometimes subjected to predation, and the
decision on PMI must be determined in conjunction with the remaining
parts of the carcass. Many techniques available for terrestrial animals
cannot be directly applied to marine animals. This includes entomology
since flies cannot access carcasses drifting offshore. As a result, deter-
mining the time of death for marine animals is often conducted through
morphological evaluations of decomposition stages. It is crucial to
recognize and accept these limitations.

Decomposition can vary significantly due to various factors,
including infection, lesions, and scavenger activity, but the primary
determinant is undoubtedly the environmental temperature [17]. Ex-
trapolations from other studies are limited. Therefore, defining decom-
position parameters specific to each location is crucial, considering the
local temperature range. Temperature is an essential aspect that should
be included in reports on evolving decomposition experiments. Due to
the many variables involved, the accuracy of each case may be
compromised. Nevertheless, population studies that include distribution
mapping can serve as alternative indicators for habitat use or, at the very
least, provide insights into trends in mortality zones, as demonstrated by
Nero et al. [4]. However, distance estimation becomes more uncertain as
decomposition progresses [4]. In coastal monitoring areas, the avail-
ability of carcasses for drifting experiments is sometimes a limiting
factor, especially when the study requires necropsies. An alternative is
developing a decomposition experiment with specimens whose cause of
death is known, such as entanglement cases. Otherwise, using animals
from other regions may be an additional alternative. Peltier et al. [7]
assumed that decomposition processes would not vary much between
similar-sized cetaceans, so they justified using more common species to
represent rarer species of similar size.

For comparison decomposition studies with a few carcasses, a
recommendation would be to proceed with the experiment during sea-
sonal conditions. This may be a solution for areas where the air and
water temperature variations are not high enough to allow annual
extrapolation. On the other hand, if stranding events are seasonally
concentrated, the experiment should be developed to align laboratory
results with field conditions during those months with higher frequency.
A decomposition study of small cetaceans monitored in cages yielded
similar results to those obtained in tagged cetaceans recovered, as pre-
sented by Peltier et al. [7]. Extrapolations are possible when ensuring
the laboratory experiment closely simulates field conditions.
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The next challenge is the backtracking modeling adapted for carcass
drift study. This usually involves modeling climate and ocean circulation
information, and interdisciplinary research integrating physical ocean-
ography is strongly recommended [11]. In situ ocean current data are
usually scarcer than wind speed and direction data. However, ocean
currents are more critical to drifting since the main portion of the car-
casses is submerged. Extrapolating drifting parameters of carcass hy-
drodynamics from different areas is not recommended. Each region
should consider its specific ocean numeric model circulation pattern,
and according to Hart et al. [6], special attention should be given to
seasonal variations. Nevertheless, the principles can be applied to esti-
mate the death sites through carcass backtracking and determine the
origin of drifting trajectories.

Regarding the spatiotemporal analysis of strandings, the environ-
mental forces that act in drifting and delivering carcasses must also be
considered; otherwise, the strand rates will lack meaningful compari-
sons between scenarios. Offshore currents and winds can conceal high
mortality rates, while the dominant onshore currents and winds, with
few strandings, may indicate low mortality rates. The approach for
assessing strand indexes about environmental forces and using tagged
carcasses is defended [16,20,29] and using drifters as substitutes for
carcasses [69].

As presented in this article, the forensic ecology approach based on
PMI and backtracking may contribute to understanding the origin of
marine animal carcasses related to crime by bringing the body back to
the site where the death occurred. It may be more frequently used as a
complementary tool for necropsy and death investigation processes,
especially regarding anthropogenic impacts. For beaching monitoring
programs, it may be helpful to understand mortality based on stranding
rates. From an ecological point of view, the seasonal variations and
habitat preferences of coastal animals would be highly valuable.
Forensic ecology would also help clarify differences between distinct
scenarios regarding environmental disasters and compare stranding
rates along time series studies. This promising approach opens a new
horizon for marine megafauna ecology and conservation research.

Our overview of forensic ecology applied to marine megafauna aims
to contribute to the conservation and management of these species.
Despite existing legislation intended to protect marine animals, they
remain susceptible to numerous anthropogenic threats [10]. An excel-
lent example of forensic ecological research in which the estimation of
bycatch derived from the reverse drift method was utilized in the In-
ternational Council for the Exploration of the Sea (ICES) technical work
serving as a foundational element in the European Commission’s
infringement procedure against France, was achieved by Peltier et al.
[20], opening a hope for similar actions in the future.

Despite the concerted efforts of professionals dedicated to marine
animal welfare, such as rescuers, veterinarians, and investigators,
forensic investigations encounter significant challenges for compre-
hensive examinations [10]. Consequently, this review explores current
study models designed to estimate mortality rates and localize incidents
to address ecological and forensic issues about marine animals. Under-
standing the prevalent causes of injuries and death resulting from
human activities necessitates additional techniques and efforts when
investigating under an ecological forensic approach. This ensures
comprehension of the causal nexus and the magnitude of threats to
which these animals are exposed, thereby guiding conservation actions
for vulnerable species.
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